Let f(x)=x2−9 ​ and g(x)=x2−7x+12 .

What is (fg)(x) ?




x−4/x+3 where ​ x≠−3,4 ​

x−4/x+3 where x≠−3,3

x+4/x−3 where ​ x≠−3,3 ​

x+3/x−4 where x≠3,4

Let fxx29 and gxx27x12 What is fgx x4x3 where x34 x4x3 where x33 x4x3 where x33 x3x4 where x34 class=

Respuesta :

[tex]f(x)=x^2-9 , g(x)=x^2-7x+12[/tex]

We need to find [tex]\frac{f}{g}(x)[/tex]

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}[/tex]

We replace f(x)  and g(x)

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{x^2-9}{x^2-7x+12}[/tex]

Now factor the numerator and denominator and simplify it

[tex]\frac{x^2-9}{x^2-7x+12}[/tex]

[tex]\frac{(x+3)(x-3)}{(x-3)(x-4)}[/tex]

Cancel out x-3

[tex]\frac{(x+3)}{(x-4)}[/tex] where x not equal to 3,4