Respuesta :

Answer:

48

Step-by-step explanation:

If x varies inversely as y, we have:

[tex]x \propto \frac{1}{y} \\\implies x = \frac{k}{y}[/tex]

When x=2, y=96

[tex]2 = \frac{k}{96}\\k=192[/tex]

When x=8, y=24

[tex]8 = \frac{k}{24}\\k=192[/tex]

Therefore, the constant of proportionality, k=192.

The equation connecting x and y is:

[tex]x = \frac{192}{y}[/tex]

When x=4

[tex]4 = \frac{192}{y}\\4y=192\\y=48[/tex]

The missing value in the inverse variation given in the table is 48.