contestada

Triangle ABC is an oblique triangle. If angle A equals 57°, angle B equals 73°, and AB equals 24 in, what is the length of AC?

Respuesta :

Step-by-step explanation:

[tex]\huge{\underbrace{\overbrace{\mathfrak{\pink{Answer:}}}}}[/tex]

Angle C must = [180 - 73 - 57 ] = [180 - 130] = 50°

And using rhw Law if Sines, we have.....

AB/sin C = AC/sin B → 24/sin(50) = AC/sin(73) → AC = 24*sin(73)/sin(50) = about 29.96 in