Respuesta :

Answer:

JK = 3[tex]\sqrt{3}[/tex]

Step-by-step explanation:

Using the cosine ratio in the right triangle and the exact value

cos60° = [tex]\frac{1}{2}[/tex] , then

cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{JK}{JL}[/tex] = [tex]\frac{JK}{6\sqrt{3} }[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2JK = 6[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

JK = 3[tex]\sqrt{3}[/tex]