Respuesta :

Given the following function:

[tex]h(x)=\begin{cases}{3x-4;x<0} \\ {2x^2-3x+10;0\leq x<4} \\ {2^x};x\ge4\end{cases}[/tex]

We will find the value of the function when x = 0 and when x = 4

First, when x = 0, the function will be equal to the second deifinition

So, h(0) will be as follows:

[tex]h(0)=2(0)^2-3(0)+10=10[/tex]

Second, when x = 4, the function will be equal to the third definition

So, h(4) will be as follows:

[tex]h(4)=2^4=16[/tex]

So, the answer will be:

[tex]\begin{gathered} h(0)=10 \\ h(4)=16 \end{gathered}[/tex]