Respuesta :

Explanation

Given the sample below, we are asked to find the mean and the standard deviation.

Part A

We can find the mean below using the formula

[tex]\begin{gathered} \text{Mean}=\frac{\sum ^{}_{}x}{n} \\ \text{where x is the sample value and n is the sample size} \end{gathered}[/tex]

Therefore,

[tex]\text{Mean }=\frac{79.8}{20}=3.99[/tex]

Answer =3.99

Part B

The standard deviation of the sample size can be found using the formula below;

[tex]\begin{gathered} S.D=\sqrt[]{\sum ^{}_{}\frac{(x-\bar{x})^2}{N-1}} \\ =\sqrt[]{\frac{20.938}{19}} \\ =\sqrt[]{1.102} \\ =1.05 \\ \end{gathered}[/tex]

Answer: 1.05

Ver imagen ZaiyaG774416