3: A Bunch of SystemsSolve each system of equations without graphing and show your reasoning. Then, check yoursolutions,

Use the elimination method to solve the given system of equations.
To do so, multiply the first equation by -3 so that the coefficient of x in the first equation becomes the additive inverse of the coefficient of x in the second equation:
[tex]\begin{gathered} -3(2x+3y)=-3(16) \\ \Rightarrow-6x-9y=-48 \end{gathered}[/tex]Then, the system is equivalent to:
[tex]\begin{gathered} -6x-9y=-48 \\ 6x-5y=20 \end{gathered}[/tex]Add both equations to eliminate the variable x and to obtain an equation in terms of the variable y only:
[tex]\begin{gathered} (-6x-9y)+(6x-5y)=-48+20 \\ \Rightarrow-6x-9y+6x-5y=-28 \\ \Rightarrow-14y=-28 \\ \Rightarrow y=\frac{-28}{-14} \\ \therefore y=2 \end{gathered}[/tex]Replace y=2 into the first equation to find the value of x:
[tex]\begin{gathered} 2x+3y=16 \\ \Rightarrow2x+3(2)=16 \\ \Rightarrow2x+6=16 \\ \Rightarrow2x=16-6 \\ \Rightarrow2x=10 \\ \Rightarrow x=\frac{10}{2} \\ \therefore x=5 \end{gathered}[/tex]Replace y=2 and x=5 into the second equation to confirm the answer:
[tex]\begin{gathered} 6x-5y=20 \\ \Rightarrow6(5)-5(2)=20 \\ \Rightarrow30-10=20 \\ \Rightarrow20=20 \end{gathered}[/tex]Therefore, the solution to the system of equations is x=5, y=2.