Suppose theta is an angle in the standard position whose terminal side is in quadrant 1 and sin theta = 84/85. find the exact values of the five remaining trigonometric functions of theta

Respuesta :

we know that

The angle theta lies in the I quadrant

[tex]sin\theta=\frac{84}{85}[/tex]

step 1

Find out the value of the cosine of angle theta

Remember that

[tex]sin^2\theta+cos^2\theta=1[/tex]

substitute given value

[tex]\begin{gathered} (\frac{84}{85})^2+cos^2\theta=1 \\ \\ cos^2\theta=1-\frac{7,056}{7,225} \\ \\ cos^2\theta=\frac{169}{7,225} \\ \\ cos\theta=\frac{13}{85} \end{gathered}[/tex]

step 2

Find out the value of the tangent of angle theta

[tex]tan\theta=\frac{sin\theta}{cos\theta}[/tex]

substitute given values

[tex]\begin{gathered} tan\theta=\frac{\frac{13}{85}}{\frac{84}{85}}=\frac{13}{84} \\ therefore \\ tan\theta=\frac{13}{84} \end{gathered}[/tex]

step 3

Find out the cotangent of angle theta

[tex]cot\theta=\frac{1}{tan\theta}[/tex]

therefore

[tex]cot\theta=\frac{84}{13}[/tex]

step 4

Find out the value of secant of angle theta

[tex]sec\theta=\frac{1}{cos\theta}[/tex]

therefore

[tex]sec\theta=\frac{85}{13}[/tex]

step 5

Find out the value of cosecant of angle theta

[tex]csc\theta=\frac{1}{sin\theta}[/tex]

therefore

[tex]csc\theta=\frac{85}{84}[/tex]