we know that
The angle theta lies in the I quadrant
[tex]sin\theta=\frac{84}{85}[/tex]step 1
Find out the value of the cosine of angle theta
Remember that
[tex]sin^2\theta+cos^2\theta=1[/tex]substitute given value
[tex]\begin{gathered} (\frac{84}{85})^2+cos^2\theta=1 \\ \\ cos^2\theta=1-\frac{7,056}{7,225} \\ \\ cos^2\theta=\frac{169}{7,225} \\ \\ cos\theta=\frac{13}{85} \end{gathered}[/tex]step 2
Find out the value of the tangent of angle theta
[tex]tan\theta=\frac{sin\theta}{cos\theta}[/tex]substitute given values
[tex]\begin{gathered} tan\theta=\frac{\frac{13}{85}}{\frac{84}{85}}=\frac{13}{84} \\ therefore \\ tan\theta=\frac{13}{84} \end{gathered}[/tex]step 3
Find out the cotangent of angle theta
[tex]cot\theta=\frac{1}{tan\theta}[/tex]therefore
[tex]cot\theta=\frac{84}{13}[/tex]step 4
Find out the value of secant of angle theta
[tex]sec\theta=\frac{1}{cos\theta}[/tex]therefore
[tex]sec\theta=\frac{85}{13}[/tex]step 5
Find out the value of cosecant of angle theta
[tex]csc\theta=\frac{1}{sin\theta}[/tex]therefore
[tex]csc\theta=\frac{85}{84}[/tex]