We are given the following information
M is between G and T
MG = 2x + 1
MT = 3x + 3
GT = 19
Let us draw a sketch to better understand the problem
As you can see, the sum of MG and MT must be equal to the GT
Mathematically,
[tex]\begin{gathered} GT=MG+MT \\ 19=(2x+1)+(3x+3) \end{gathered}[/tex]Let us solve the above equation or x
[tex]\begin{gathered} 19=2x+1+3x+3 \\ 19=2x+3x+1+3 \\ 19=5x+4 \\ 19-4=5x \\ 15=5x \\ \frac{15}{5}=x \\ 3=x \\ x=3 \end{gathered}[/tex]So, the value of x is 3
[tex]\begin{gathered} MG=2x+1 \\ MG=2(3)+1 \\ MG=6+1 \\ MG=7 \end{gathered}[/tex][tex]\begin{gathered} MT=3x+3 \\ MT=3(3)+3 \\ MT=9+3 \\ MT=12 \end{gathered}[/tex]Therefore, the required values are
x = 3
MG = 7
MT = 12