Respuesta :

[tex]r_{x-axis}\circ R_{180}[/tex]

In a composite transformation as given you make first the transformation in the right and then the transformation in the left.

For the given point: (-7, 3)

1. Rotation 180°

[tex]\begin{gathered} P(x,y)\rightarrow P^{\prime}(-x,-y) \\ \\ P(-7,3)\rightarrow P^{\prime}(7,-3) \end{gathered}[/tex]

2. Reflection over x-axis:

[tex]\begin{gathered} P^{\prime}(x,y)\rightarrow P^{\prime}^{\prime}(x,-y) \\ \\ P^{\prime}(7,-3)\rightarrow P^{\doubleprime}(7,3) \end{gathered}[/tex]

Then, the image of given point after the composite transformation is (7,3)