Respuesta :

Given the values of z and w, as

[tex]\begin{gathered} z=9\mleft(cos\: \frac{\pi}{4}+i\: sin\: \frac{\pi}{4}\mright) \\ w=9\mleft(cos\: \frac{\pi\:}{10}+i\: sin\: \frac{\pi\:}{10}\mright) \end{gathered}[/tex]

we will find z w, as follow

[tex]\begin{gathered} zw=9\lbrack(\cos \frac{\pi}{10}-\cos \frac{\pi}{4})+i(\sin \frac{\pi}{10}-\sin \frac{\pi}{4})\rbrack \\ zw=9\lbrack0.244-i0.398\rbrack \end{gathered}[/tex]

Simplifying further

[tex]zw=2.196-i3.582[/tex]

To express in polar and exponetial form

[tex]\begin{gathered} |r|=\sqrt[]{2.196^2+\mleft(-3.582\mright)^2} \\ |r|=4.20 \end{gathered}[/tex]

We need to get the angle between them

[tex]\begin{gathered} \theta=\tan ^{-1}(\frac{-3.582}{2.196}) \\ \theta=-58.49^0 \\ \theta=301.511^0 \\ In\text{ radians} \\ \theta=\frac{2\pi\times301.511}{360}=1.675\pi \end{gathered}[/tex]

Thus, in the polar form, we will have

[tex](4.2,1.675\pi)[/tex]

For the exponential form, we will have

[tex]undefined[/tex]