Respuesta :

[tex]14\sqrt[]{6}i[/tex]

1) Let's rewrite it into the z=a +bi form.

2) So we can write out the following noticing that i² =-1 as well as √-1=i

[tex]\begin{gathered} \sqrt[]{-1176}=\sqrt[]{-1}\cdot\sqrt[]{1176} \\ Factoring \\ \sqrt[]{-1}\cdot14\sqrt[]{6} \\ i\cdot14\sqrt[]{6} \\ 14\sqrt[]{6}i \end{gathered}[/tex]

Note that in this number the real part "a" is equal to 0.