[tex] \sqrt{-80} \\
[/tex] We can write it as: [tex] \sqrt{-1} \times \sqrt{80} [/tex] Apply imaginary number rule: [tex] \sqrt{-1} =i[/tex] We get [tex] =\sqrt{80} i[/tex] Now factorise 80. 80=4 x 4 x 5 = 4² x 5 [tex] \sqrt{80}i = \sqrt{4^2 \times 5} i [/tex] [tex] =\sqrt{4^2} \times \sqrt{5} i \\
=4 \sqrt{5} i[/tex] [tex]Answer: \ 4 \sqrt{5} i[/tex]
For this case what you should do is rewrite the function. We then have to rewrite: root (-80) root (- (16 * 5)) 4raiz (-5) Then remember that: Root (-1) = i We have then: 4raiz (5) i Answer: The equivalent expression is: 4raiz (5) i (option 3)